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13. cont.

between the zones where continuity of displacement and traction is required. This results

in the definition of a "lateral propagator" of the wave field 4hen applied to all the zones
making up the entire medium and is, in application, very similar to the classical "vertical
propagator" method. The method is .exact wilen the lateral variations are actually discontin-
ous step changes in properties. When the actual changes can be approximated as a sequence
of steps the method should be superior in computational accuracy and speed to numerical
methods.
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Wave Propagation in Laterally Varying Media: A Modal Expansion Method

by

Charles B. Archambeau

Zonal Partitioning and Green's Function Representations

Consider a two dimensionally varying elastic-anelastic medium, as indicated in Figure 1.

In each zone Vc, a = 1,2, - • M. the medium varies in the vertical direction (z), but is uniform in

the horizontal direction (y or p). The supposition is that the laterally varying medium can be

approximated by a seri s of step variations in material properties in the same way as is done in

the vertical direction.

In V. A e have for he frequency domain displacement field (a)u at any point r within Vc:

(a)ul (r, 0)) = I [tj(r)(a)Gj(r, ro, (o) - u,(ro)(a)g](r, ro; co)]dao (1)

where (a)Gl and (a)gji are the zonal displacement and traction Greens' functions appropriate for

the zone or region V,.* The vertical boundary surfaces of Va are Ea and Et. 1, as indicated in

Figure 1. Here we assume no sources ir, 'd Va and that the Green's functions satisfy all inter-

nal boundary conditions on all horizontal layers in Va. (In this case there are no surface

integrals over intei ial boundaries in (1)). Green's functions in Va can be written in erms of the

eigenvalues ka and eigenfunctions (a)4 for this zone as

Summation over repeated coordinate indices is used throughout. Coordinate ind,ces will appear as lower case latin sub-
scnpts and superscripts. The summation convention does not apply to any indices appeanng in parenthesis.

Throughout thia development the "sum" over the eigenvalues ka will be written as a discrete summation b.t it should
be understood that in an unbounded medium, such as a layered half space. pat of the wave number spectrum will be con-
tinuous In this case the "sum" over ka must be interpreted as a generalized summation involving a regular sum over the
disci. :e part of the spectrum plus an integration c er the continuous part of the wave number spectrum
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Figure I Zonal partitioning of a vertically and laterally
varying medium into subregions of uniform
horizontal layering.
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(a)i~jrr.;co = 4n (a)jj., ka) (ahft(, ka) (2)
mc~ Na(k ,' (o)

where (a)11 is the complex conjugate of (aw and Na, is a normalization constant which may be a

function of frequency oi and the wave number ka. Since the WT)4J, are eigenfunctions for the

region Va, this Green's function satisfies all boundary conditions along the horizontal boun-

daries in Va. (For details see Harvey, 1983.)

Further, since:

= n~o) a(a)Gnir, r; co)1

where niO) is the surface normal to Ea and E,,-, and x/o) are source coordinate variables, then

(a~~I~; r; o) 4i ~(a)qi (r0, ka)(a)WI(r, ka)
mJgJr;r;(o 1  Na~k a)c) (f3)

Here m is the angular index for cylindrical coordinates, ka the horizontal wave number

corresponding to the modes in Va and where:

(a)Y.g(r 0, ka) = n~o) C~jyn axp [(a)Wn(ro, ka)] (4)

Because of the horizontal layering in Va, the eigenfunctions (a)Wj and (a)Yj are defined sec-

fionally, that is:

( a ) , J = a ) W J ' ) ( z I z ~ i ! zJ i

with (s) the horizontal layer index in Va-

For the horizontally layered region Va we have that:

=aG (aPG' + "t)Gil(5
(a)g~ = (ctRgjl + k9aiJ

3



Here ( 0; amid ( )G/ are the Rayleigh and Love type Green's displacement functions (with Simi-

lar names for the associated Green's tractions) and whe i e

("2Gjl(r, ro; o) = 4n E (0hp1(r0, A) (*)xp1(r, <)

(cL)Gjj(r. ro; co) = 4nIC L &)ko

with Rk. and Lk,, representing the Rayleigh and Love type mode eig nvalues. Likewis

(fgj(r, ro; c) = 4nt 1 (a)T(r 0, Rtka) ~(F , RA.)
mpg~cG N R)(ka, w)(7

(aL)gj(r, ro; w) = 4nt E ~~( L k)(h(rJ)(7
M,Lkca N&-)(ka, o

In cylindrical coordinates (p, 0, z), the eigenfunctions are (see, for example, Harvey, 1981;:

(c ,(r, Rk,) = (a Dm(Z; Rk.) P(Rk. )
+ (aI)Em(z; Rk.) B(Rk~p. ,

(aR)P(r, Rka) = (c)Rm(z, Rkc,) PM(Rkcp,4O)(8
+ (a)Sm(z; Rka) Bm(Rka p, 0

f1WrLk)= (a')Fm(z; Lka) Cm(LkaP, {9
(c)'P(r, Lk) = (a)T(z; .ka)Cm(LkapO)J

Here P, B and C are the vector cylindrical harmonics defined as:

Pm(kp, ) zJm(kp)em

Bm(kp,o) ap d P + P*[~ Jm(kp)enT1 1 (10)

Cm(kp,4) Wkp__

where
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Jm(kp) = H ,(kp) + H/i) (kp)

with Jm the cylindrical Bessel function and HA) and HA) the cylindrical Hankel functions.

These vector functions are clearly such that Pmo'Bin = Pm'Cm = BnCm = 0 and also have the

usual functional orthogonality. (e.g. Stratton 1941, Morse and Feshbach. 1953). here 6:, e. and

6# are the unit vectors in cylindrical coordinates. The various "stress-displacement" functions

(a)Dm, O)Em. (a)Rm'.' (a)Tm in (8) are the same as those usually appearing in the ordinary

developments for a laterally homogeneous layered half space -- such as described in Harkrider

(1964): Ben Menahem and Singh (1972), or Harvey (1981).

Similar representations for the eigenfunctions can be given in cartesian and spherical coor-

dinates. (In the latter case the eigenfunctions ,W and LW are usually termed spheroidal and tor-

sional; and P, B and C become vector spherical harmonics). The choice of cylindrical coordi-

nates implies rotational symmetry, that is that the medium is partitioned into zones V. which are

cylindrical shells, with 7igure 1 depicting a cross section at fixed 0. If cartesian coordinates are

used, then Figure 1 represents a cross section at constant y, with properties constant in the ±y

directions. In the development that immediately follows cylindrical coordinates will be used;

however the cartesian and spherical representations are also appropriate and the development

and results are analogous to those for the cylindrical choice.

"Forward" and "Backward Propagating" Mode Expansions

In addition to the eigenfunction expansions of the Green's functions in V,, we can also

expand the displacements and tractions, appearing in (1) in terms of eigenfunctions in V,. In

particular, (a), (ro) and (a)tj(r o) may be expanded in terms of "forward" and "backward" pro-

pagating modes as:

5



()u(r, o)) -(@)u i)(ro. Co) + ()U1 2)(ro0 a)1

()tj(ro, (0) (a)t"(r. (0) + ()tJM(ro, (0)J
where the sUp r cripts (1) and (2) denote modes propagating in the positive and negative radial

(p) directions. Specifically,

(0 011:[(*)a)( (qire k) +* (a)a 2)(k) ()w/j 2)(r0, (2
(U)t( , to) - £kf(aa,1? (k )(. FV~1)(r0, k ) + (') )(k, ) (a)ijFZ)(ro k )] 1?

m(!2)

when

*'0)W a k0. g) Pp) + ()E,'(zg; k)BA + ()Fm,(zo, ka) CW)elm,#

(13)

(,I,(P)(r , k). ()R m(zo, k ) PW + O)Sm.,(zo; k ) D) + T,(z0; k ) Co1 eim'#

with

PAP) = ei, H)(kp) ; p = 1, 2

BP) = ~ Q~+64 J Hp~)(k4~p) (14)

The coefficients (a)a() (ks) are to be determined from boundary conditions at E. and E,.

these conditions bring the continuity of displacement and traction on these surfaces. On the

other hand, of course, all the functions (W)Dg), :Ea' ), (€)FM), (G)R-),, (a)Sg), and (a)Tg ) are

known functions of the coordinate variables and the intrinsic material properties of ti , internal

horizontal layers, since they are provided by the usuai one-dimensional propagator approach in a

layered half space (e.g.. Harvey, 1981). The explicit forms of the functions are included in the
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Appendix 1.

Given that 01 and g in (1) can be split into Rayleigh and Love type Green's functions, as

defined in (5)-(9). then it follows that (O)uj can also be split into modal sums involving only (,j

and (OL"p. Therefore:

W au ,P Wu [ ()P) + (CPtulP)] (S

where

£('?pul(P) r., [o) ~ (1) (vk ) (fQ~ji) + ('a,,a 2) (,k;) (TyI)]

(16)
(Cr)(p)(ro.)- (a() am aLa() ) Lk; aL)W

potl m'. (L) ()(L;,Tw(1 O

with

('(,,) = [(u)D, tko. ,m.), + (=a.)m,o: .ka),BM)] et'R,{ 17
(TA) ,(p)(ro, Lk.) = (Q)Fm°(Z. ; ,kga) CO ) eunw#17

A similar decompo sition applies to the ti action Mt.

It is importart to note that the eigenfunctions used to expand the Green's functions in equa-

tions (2) - (7) are appropriate for the horizontally layered zone in Va and are themselves normal-

ized such that:

< (aWj(P)(ka), (a wj(P)(k )> n (IWP)(kr) (P)(k r)dV = 6(k, -k;) 6Im'

(19)

<N(Lhgj(P)(k.), (ct)y,(P)> . OT (p)(kar) (L) (P)(k'r)dV = 6(ka -k )6m'M

where (a)i denotes the complex conjugate of (a)W, and the right hand side involves the usual



delta functions. Therefore the normalization factors appearing in the Green's function expan-

sions are free parameters that may be chosen so as to appropnately normalize the zonal Green's

functions in V., a = 1,2, ... M.

To obtain the appropriate normalization factors for (G? and (aL)G and, in addition, to

express these Green's functions in forms that are convenient for use with the expanded form for

(a)uj in (15)-(16), it is useful to adopt an expansion form for the Green's functions that is similar

to that for (a)uj in (15). That is, using both (apI ) and (a)Wp,( 2) in the expansion for (a)G1, we

express the Green's functions as:

(a Gj (r, re; o)) = (cGMj'0 + ()Gi2)l
( a) G (r, r; co) = (af)G 1) + (PG I12)f (20)

where:

(INGSP) = 4n E (a)ijfP)(ro, Rk ) ( )W,(P)(r, Rka)
m, Rka RNip)(ka, ) (21)

(cL0Ge) = 47t E (chf(P)(r 0 , Lka) a)qi(P)(r, Lka)
m, k LN~a)(ka , (o)

and similarly for (Ogfj and (L)gjJ, the Green's tractions.

Orthogonality and Normalization Relations for Zonal Eigenfunctions

We can use (15)-(16) in (1) and also substitute (20)-(21) into this representation integral.

Since the representation given by (1) should be of the form of the expansion in (15), we should

obtain by proper choice of the normalization factors, RNa) and .Na), exactly the expansion

given in (15) in terms of forward and backward propagating modes. In particular, from (1) we

have:

(M)u, (r, o) = (a)uj (r, co) + (aL)uj (r, co) (22)
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with

(0)1ui(r, (o) = :Rt~ (i G j- RUj 1 R da0, ; r c Va'

(a)u,(r, (o) = L1 t1  L G I U (23)
LL~l[Ltj (jGi d1a0  r a

Introducing the exphcit eigenfunction expansions from (15)-(16) and (20)-(2 1), we get:

auj(r, co)= (au,(P)(r, c)) (24)
pal

'Vu.'P)(r, o)= ( a~ 9 (Rk; ) m-a. RNFa } [{) <aP(P)(Rk ), (a),# a(R)>a.,-i

M',Rk mRk,

- < (a)W(P)(Rk ), (a)T (1)(Rka)>a a-l}(a)Mli l(r , Rka) +{(aYJPP)(Rka), (a~1I(2)(ka)>a a-I

- < j()M1  (ik'), (aff1 (2) (Rk)> a..i} (M1
2) (r, k.~ (25)

Here terms of the form:

<xpi(k ), Xj(ka)>a, a-i a <Wj(k ), j(ka)>a + <j(k ), Xj(kt)>a.-I

are introduced, where the inner product is defined over the surface E'a (or Ea-1) as:

<Wj(k ), Xj(ka)> a Wj(ro, k )7y(ro, ka)dao

with summation over the repeated coordinate index (j) implied. An exactly analogous result

holds for LU1; with the suffix "R" replaced by "L" in (24) and (25).

Comparing (25) with the equivalent expressions in (15) - (16), it is clear that the tuner pro-

ducts appeanng in (25) must reduce to delta functions over the angular index m and the mode

eigenvalues kca. In particular, the following orthogonality conditions apply*:

*Where it is obvious from context, the R and L identifying subscripts on the wave numbers Rkc and Lka will be
suppressed in order to reduce clutter in the equations.

9



< ()Y10%(k) (Q)Wj~P)(k)>p - < (a)(P)(k'), (a)'j(P)(k,)>,

= [ [¢YP)(khro). (a)i(P)(karo) - (a)W(P)(k~ro) • (a TAP)(karo)dao (26)

= [P(k pp) -f)(kaPp) + Bp)(k~pp) 4?)(ktpp) 6m;

with a = , a - I and p = 1,2 and where np = 2tpp. ( !ere pp is the constant value of the radial

coordinate on the surface Ep.) In addition,

< ( MIP) (k'), (a)W(q)(k,) >p - < (ayjP)(k ), (a)fq)(ka)>P =

(27)

[('Pj(P)(k~ro). (a); q)(ktro) - (aP(P)(k~r0). (aqTq))karo)j da: 0

for a3 = a, a - 1 and p * q. Formally identical relations hold for the eigenfunctions (a)VP) and

are obtained by replacing the suffix "R" by "L" in (26) and (27). Here we observe th it the for-

ward and backward propagating modes are completely orthogonal sets. These conditions are

equivalent to those obtained by Herrera (1964) and McGarr and Alsop (1967) and were used by

Kennett (1983) in his development of a formalism for wave propagation in laterally varying

media. In more explicit form, equations (26) and (27) are equivalent to:

ka) (a)Unzo ; ka) - (a)Dm(zo k) (a)Rm(Zo ka) dzo =

11(a)m(zO k, (aL1nz 0 ka m a o

(a)Sm(zo ; k ) (a)-( ; ka) - (a)Em(z o  k) (aF n, 70 ka) dz 0 = 6=

where the subscript "R" on the P-SV wave number has also bcen suppressed n these expres-

sions. For the SH modes the analogous orthogonahty relation is easily seen to b

1 [)Tm(zO ; kc)(W)Fm(zo ; ka) - ()Fm(zo; k')(a)Tm(zo ; ka) dzo = , '

10



where the wave numbers and k,, and kc now refer to the SH wave number set Lka. The "vertical

eigenfunctions" in V, are those defined in (13) and are simple expontials in zo. (See Harvey,

1981.) Here also we consider the k, to be discrete infinite sets, so that orthogonality is expressed

by the Kronecker delta 6.

Using these orthogonality relations in (25) gives:

r

"uuj(')(r, o)= Ya ( Ea mt (kP) ( iI')(r, k +)
mk ,a

provided we take:

RNI() = [n PW l)(kaPa)' Pi)(kapa) + B) (kap) -iW)(kaPci)}

(28)

+ na-i{P P!(kapaj.) -P,' O(kaPa-I) + B')(kaPa-it)B(kapa- i)

Similarly,

Ruj(2)(r, C'))= (a ) (k.) ( )2)(r,k.)
in,ka

provided

= ..Na) n, P&?(~,-k)(kapa) + 13 1)(kapa+ BAk2(kcppci

(29)

11



+ n.. )(kapai) -t P1)(kap._ 1) + B( )(kapa.-) • -2)(kp_0,iP

The results for (a)u are analogous and the normalization factors are:

i,.NI (u = [naCM)(kaPca)'CW(kaPa) + nla-iCA()(kaPa-i)c')(kaPa-1)] (30)

LN2
(a ) [naC)(kopa) - 2)(kap) + na-1(31(kaPa))2)(kaa(

Thus, the form of the displacement field in any one of the zones Va is given by

(a)u3(r, o))= E (aml(Rka)(ay(i)(r, Rk,) +(a (2 (Rka) (qy42)(r, ,kc)1
m,Rka

+ 1 (Lkc,) (aL9)i( 1)(r, Lko) + (qaa 1 (Lka)"aLi, 2 (r, l.ka) " r V= (32)
m,Lka

which is (merely) a sum of P-SV modes propagating in the forward and backward horizontal

directions, plus a similar sum of SH modes. Further, the displacement field in V, is connected to

its values on the boundary surfaces Ec and E,-i by the representations in (23), with the Greens

functions given by the eigenfunction expansions of (20) - (21) and with the normalizations

specified by (28) - (31). Use of these latter representations provide the means of determining the

coefficients ('?a p) and wa (P) in (32), and thereby an explicit expression of the displacement

field in V. in terms of the modes of this horizontall layered region. As will be shown. the

coefficients between all the zones Va, a = 1,2, • • M, are linked by a propagator formalism.

Zonal Boundary Conditions, Projections and Lateral Propagators

Continuity conditions expressing conservation of momentum, mass and energy apply

throughout the medium, however complex the intrinsic matenal properties. In parucula such

conditions apply along the control surfaces E,, separating the zones of uniform lateral ploperties

12



in Figure 1. In the case of a solid medium, with welded contacts at all layer boundaries, the con-

tinuity conditions along the surface E. are:

jat a=a ~)a 1, 2,3 (33)

where the subscript a on the matrix brackets is used to indicate evaluation on the vertical boun-

dary E,, between the zones Va and Va~l

The displacements and tractions in (33) can be expressed in terms of the eigenfunction

expansion of (32). However, since the P-SV and SH modes are decoupled in Va and V+ 1, then

(33) can also be expressed by the decoupled set of relations:

(~A~'~k ) (?~j(P)(Rka)1 u)A(k) [(a+i)R4I1(P)(Rk+i)]] ,
m Rka pat I (0)()RJ M Rku-, Put 'iRfP(k~ a]

(34a)

E Z~j~= E)(Lka)= E (] 1 j )tAg)(Lka+,) (a+,)(+) :j- 3
M Lka Pu (a3'1FJP)(Lkc1 . a(aM kaikalP(P)(a+ )j Jal

(34b)

where the expansions in P-SV and SH i loves have been substituted for uj and t, on both sides of

(33). A similar set of boundary equations apply to the other vertical boundary of Va, on the sur-

face Ea - 1, in Figure 1. (In this case the matrices are evaluated on E. - I so the matrix indices in

(34) change to (a - 1) throughout, while on the right side of (34) all the eigenvalue and eigen-

function indices change from a + 1) to (a - 1).)

We can extramt expressions for individual mode coefficients (O'Ag?) and ( )Ag), appropri-

ate to the zone V,. in terms of the mode coefficients in the zone Va, I by taking integral inner

products ("project ons") between the displacement and traction eigenfunctions on both sides of

13



(34). Then we can use the (P-SV) orthogonality relations in (26) - (27), along with comparable

orthogonal relations for SH modes. Specifically, using inner product bracket notation as before

in equation (25) and taking the inner products between displacement and traction eigenfunctions

on both sides of (34), we have:

m, ()a pal <(a)qj(P)(kc), (a)X(s)(kn))> = k.d (a+i)A <)(ka+1 ) <(a+1Jj(P)(ka+1 ) , (a)(k(n))>c

(35)

where indices R or L have been suppressed but are implied, with appropnate use depending on

whether j = 1, 2 or j = 3, as indicated by (34a) and (341)). (That is, this equation applies to either

(34a) or (34b)). For specificity, one uses P-SV eigenfunctions and eigenvalues and a subscript

"R" when considering component equations with j = 1 2 and uses SH eigenfunctions and eigen-

values with subscript "L" when considering the j = 3 component equation.) Here k~nl denotes the

specific nth eigenvalue of one particular mode with angular index in'.

Now we can subtract the upper matnx equation in (35) from the lower one and then make

use of the orthogonality relations for P-SV modes in (26) - (27), and the obvious similar pair for

the SH modes, to obtain:

(O)A1 s)(k&1)) = F. j (a +AMg)(k+) <(a+ )WjiP)(k,+ 1) (u)P(s)(kn))> -

<(a+I)P()(k) (WW(kn))>U s = 1, 2 (36)

where we have equated the sums over m, on each side of (35), term by term. ['his equation

again applies to either P-SV or SH modes; however, for P-SV modes j = 1, 2 and or SH modes.

then j = 3. Therefore in (36) the implied summation over the coordinate index is wer j = 1 and

2, for the P-SV case, and for SH modes only the one term, for wh ch j = 3., oc urs. The fiee
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index (s) denotes the forward and backward horizontally propagating modes, so that (36)

expresses a relationship for both mode types. The factor Na) is the normalization "constant"

appropriate for the different mode types. These factors are given in (28) - (29), for the forward

and backward propagating P-SV modes, and in (30) - (31) for the SH modes.

It can be seen from (36) that a particular mode in Va, at a particular eigenvalue (or wave

number), will be "excited" by all the forward and backward propagating modes in V,+, in the

manner descri ed by the expression on the right side in (36). Thus, all the modes in Va,,, at all

wave number', will contribute to the excitation of any one mode in V. (at a particular wave

number) in pr portion to the sum of the mode coefficients, (a4t)AM)(ka+t), weighted by the inner

product factors given by the bracket term on the right side of (36). Thus the weight factors in

(36) will be called coupling coefficients.

Considering the k.+, eigenvalues as a discrete (infinite) set {kg 1), as was implied for k.

by the use o k n), then we can define the discrete coupling coefficients as

in' ' (a + I ; )(i P (a)kP 3)(k.n)> - <a+YP)(kg1  (Gh#p()(k&>]

(37)

and (36) becomes:

(k~n)) PC' ) (a+l ;a) (a+)a ')(k 1 ) , s=l,2 (38)
I p-i

The coupling coefficients can be expressed in more detail when the specific functional

forms of the eigenfunctions appearing in the inner products are used in (37). In this case we can

use the orthogonality of the vector cylinderical harmonics to reduce the coupling factors to sim-

ple integrals over the vertical (z) coordinate on the boundaries of each zone Va. Specifically,

from (37) for the P-SV case, using the eigenfunction expressions given earlier in (13) - (14), one
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has:

RCi 1 'S) (a+l I a) n [{<(+)D, ()R> - <(a+)R I, (a)D> ''(k pa). P)

+ {<(a+i)EIt (a)Sn> - <(a+')S ,, (a)E> B9)(kQ! .iPa)-)(kn)Pa)l (39)

where n. = 2nPa, with p, denoting the value of the radial coordinate on the surface E,. Further

the various inner products involve the "vertical eigenfunctions" defined in (13) ,nd (17); where

these inner products have explicit forms of the type:

<(alI)DI , (a)Rn> a i (a+')Dm(zo; j%)(a)R~n(zo; k ,))dzo (39a)

with similar expressions for the other products in (39). If these products are compared to those

in (26) and (27) - or more directly to the orthogonality relations involving the vertical eigenfunc.

tions given by the equations following equation (27) it can be seen that the inner products in

(39) reduce to delta functions if the eigenfunctions in the zones V. and V., are the same; that

is. if (a+i)Dm = (G)Dm , (a+i)Rm = (a)R, etc. This, of course, is as it must be, since only when the

physical properties in the two zones are identical will the eigenfunctions be the same and it then

follows that the coupling matrix must be diagonal -that is that the boundary between the two

zones produces no ,ioss mode excitation and is transparent. We see, therefore, that t'ie analyn.

cal expression in (39) for the coupling does indeed have this required property.

The normalization factor for Ca-s) is the ratio HNs(CO / nt which can be redefined as [.\,, a),

where from the previous expressions for RNs(a), in (28) and (29), ttus co istant has the form:

RN,(a) = PQ)(k ,n)p,'-ft)(k(n)pj) + Bs)(k P)' knf(ka p.)

(40)

+Ps-. P)() l)p) p 1 )a-, -m ,.- -,I
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In an exactly analogous fashion the coupling coefficients for the SH modes are found to be:

LC gn)(a+ Ia)= na) [<( ,)F1, (a)Tn>-<(a+,)T1 ,(a)Fn>]C )(kalpa). 1)(k(n)pa)

(41)

where the inner products are again of the simple form:

<(a .I)F , (a)Tn> X I(a+')Fm(zo ; k&1c1)(a)Tm(Zo k&")) dzo (41 a)

Further, we can again define a new normalization factor LNS(O) W LN,(W) / nt which has the foi m:

L&'(0) = C~)knp)r n)knp.+ fe.11L] (k )C,) !m)(kln)pa..I] (42)
L .

The con- rutations involved in determining these coefficients are straightforward, since the

cylinderical t rmonics are tabulated and tihe integrals over the vertical coordinate z4 involve

simple integrn Is of exponentials that can be evaluated analytically. in closed form, for the gen.

eral case.

Since (3.:) constitutes a set of two equations for s = 1 and s = 2, corresponding to forward

and backward propagatng modes and since the sums on the right can clearly be expressed as a

product of ma.rnces, it is natural to write the results in matrix form. Therefore we define:

Oa ) (&))

t (aaS[a u .for s = I and2 (43a)

and a similar column matrix of length (L) denoted [(*+')a (P 1. where the angular index m has

been -uppressed ,n wnnng the mode excitation matrices. Further, we can define coupling

17



m-trices by:

C 11 (p,'C21(PS) CLI(Ps)

C2(Ps ) C 22(P's) CL2(p's)
[C ( s)] - - (43b)

C IN(P's) ... C (ps)

for each s and p value, where s - 1,2 and p a 1.2. With these definitions one c, n write the sys-

tem of equations implied by (38) in the form:

[(~aZ) =[C gj) ] [C (2.2)1 [,) a2 (44)

where the forward and backward propagating mode excitation coefficients are, isplayed expli-

citly. In defining the [C6M) I matrices, and in writing the matrix result in (44). the "a indices"

have been suppressed. However, when confusion can arise they should be written as

[Ch,(PA) (ct + I; a)]. etc., since the a indices change when the matrix refers to a boundary other

than -,. (eg. Between the zones Va-. and V., on the surface E,1, the cot ping matrix is

expressed as [Ci(P') (a; a-)]).

Obviously the coupling matrices are square only if L = N. that is if we use as many modes

in V. as in V., to represent the propagating waves. This choice will be adhe: Ad to, from this

point forward, although it is not a necessary condition.

It is evident that the partitioned matrices can t e written in unpartitionc I form as well,

where, with L - N, the mode coefficient matrices are nf d nension (2N x 1) and the coupling

matrix is square and of dimension (2N x 2N). Thus. we can also define mode coefficient

matrices consisting of the (ordered) mode coefficients for the forward and backward propagating

modes in the zones V. and V.+1 as (say):

18



=) [(oa 2[(a(ama]

(45a)

(+ ((a+ia(]a ,

and, similarly, we can define what can appropriately be called a horizontal propagator matnix:

[H ~ ~ ~ c~z [ca+I a. (5b

Now the equation (44) can be written in the more compact form:

[(G)m] = [Hn(a+1, a)] [(a+,m] (46)

and expresses the required conditions between the mode coefficients in neighboring zones.

If we take successive values of a, with c ranging from I to M. I say, then we get

[MM a,] = [Ht(2 ; l)1[(2)rM1]

[(2)mnl a [Hi(3 ; 2)l[(3)mJ

[€"-')m n] = [H 1n(N ; M- 1)lI('4)M 1

Clearly, by notin, in these equations that the indices I and n are just dummy indices providing a

numbering syster i for the eigenvalues, then

I (Imn] = [Hlj (2;, 1)1 [H ,(3 ; 2)] ... IX(M * Ni-I1)] [(Mt)M 1]

by successive su~stitunons. Consequently, we can write, for any 1 > a + 1:
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This is a propagator equation that connects the mode coefficients in any zone Vp with those in

any other zone Va. In case 1 = a + 1 the equation (47) reduces to equation (46), which connects

the coefficients in any two neighboring zones. Since the coupling coefficients composing :Hin'
L J

can be computed from the simple eigenfunction inner products at the zone interfaces, this equa-

tion provides the means of computing mode coefficients that produce displacements and trac-

tions satisfying all the boundary conditions along the vertical beundaries of the medium. Since

the eigenfunctions used already satisfy the boundary conditions along the horizontal boundanes

in each zone, then by use of the horizontal propagator relation all the boundary conditions in the

laterally and vertically "layered" medium being considered can be satisfied.

Summary and Conclusions

The basic method described here makes use of normal mode expansions of the wave field

in each partitioned sub-region of the medium within which the medium is uniform in the lateral

directions. Thus the medium is partitioned into laterally uniform zones and complete normal

mode solutions are obtained fro each horizontally layered zone. In the analytical development

the "zonal eigenvalues and eigenfunctions" are generated by treating each zone as a layered half

space or radially layered sphere, as ia appropriate for th medium geometry. The resulting set of'

modes are then used as bases for expansions of the wave fields in the laycied subiegions. 1i1C

mode expansions defined on the zones are then "connected" by matching (equating) the exact

Green's function representations of the wave fields in each zone at the common boundaries

between the zones where continuity of displacement and traction is required. This results in the

definition of a "lateral propagator" of the wave field when applied to all the zones mak-ng up the

entire medium and is, in application, very similar to the classical "vertical propagator method.
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The method is exact when the lateral variations are actually discontinuous step changes in pro-

perties. When the actual changes can be approximated as a sequence of step the method should

be supenor in computational accuracy and speed to numencal methods.

In implementations of this method it is only necessary to compute the "zonal" normal

modes once, and subsequently these zonal mode solutions can be combined in a variety of ways,

using the lateral propagator equation, to produce theoretically predicted wave fields in many dif-

ferent laterally varying structures wintout the necessity of a complete recomputation of wave

fields in each new structure. Further, the propagators are analytically defined so that manipula-

tions related to inversion and perturbation calculations can be considered. For these reasons, and

because of its inherent high accuracy, this method should prove useful in modeling seismic wave'

fields in complex media and in inversion studies. In the present study the method is developed

in detail for two dimensionally variable media, using cylindrical coordinates and wave functions.

However, analogous results in rectangular and spherical coordinates may be obtained using the

same procudure and are appropriate for media with variability in all three spatial dimensions.
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